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Abstract

Zero-Shot Detection (ZSD), which aims at localizing and
recognizing unseen objects in a complicated scene, usually
leverages the visual and semantic information of individ-
ual objects alone. However, scene understanding of hu-
man exceeds recognizing individual objects separately: the
contextual information among multiple objects such as vi-
sual relational information (e.g. visually similar objects)
and semantic relational information (e.g. co-occurrences)
is helpful for understanding of visual scene. In this pa-
per, we verify that contextual information plays a more im-
portant role in ZSD than in traditional object detection.
To make full use of such information, we propose a new
end-to-end ZSD method GRaph Aligning Network (GRAN)
based on graph modeling and reasoning which simultane-
ously considers visual and semantic information of multiple
objects instead of individual objects. Specifically, we for-
mulate a Visual Relational Graph (VRG) and a Semantic
Relational Graph (SRG), where the nodes are the objects
in the image and the semantic representations of classes re-
spectively and the edges are the relevance between nodes
in each graph. To characterize mutual effect between two
modalities, the two graphs are further merged into a hetero-
geneous Visual-Semantic Relational Graph (VSRG), where
modal translators are designed for the two subgraphs to en-
able modal information to transform into a common space
for communication, and message passing among nodes is
enforced to refine their representations. Comprehensive ex-
periments on MSCOCO dataset demonstrate the advantage
of our method over state-of-the-arts, and qualitative anal-
ysis suggests the validity of using contextual information.

1. Introduction

Object detection [16, 15, 42, 26, 49, 10, 4, 44, 9, 21,
36, 40, 29, 41, 27, 46] has been greatly developed with the

Sheep

Sheep?

OrangeBanana?

These two objects have 
visual resemblance.

Orange and banana
often appear together.

(a) Visual Relational Information (b) Semantic Relational Information

“orange banana smoothie”
“orange banana nut bread”

“fruits such as oranges, bananas, …”

……

Figure 1. The illustrative diagrams of leveraging two kinds of con-
textual information: (a) Visual relational information can help de-
tect small objects of the same category; (b) Oranges and bananas
often appear together, hence we can use this semantic relational
information to detect the occluded banana under the condition that
an orange is detected.

convolutional neural network (CNN) in the past few years.
Although these detection methods have achieved good per-
formance, they can only detect objects seen in the training
set. Recently, several works [39, 2, 11] propose Zero-Shot
Detection (ZSD) task which aims to simultaneously localize
and recognize unseen novel objects. Semantic information
among categories is exploited to bridge the gap between
seen and unseen classes. Nevertheless, the visual informa-
tion is simply treated by separately matching the semantic
information of each category to identify the isolated objects,
resulting in no essential difference between ZSD and Zero-
Shot Recognition (ZSR) [14, 23]. It should be noted that
the target of ZSD is not a simple image containing merely
one single object, but a natural scene with multiple related
objects. Therefore, context is naturally useful information.

The importance of context in ZSD is illustrated in Fig.1.
The small object sheep and the occluded bananawill prob-
ably fail to be detected in ZSD because of insufficient vi-
sual and semantic information of such individual objects.
In such case, contextual information will help a lot. For
ZSD, we can use contextual information including visual re-
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lational information (visually similar objects) and semantic
relational information (co-occurrences) to assist detection.
For example, in Fig.1 (a) large objects can be used to help
detect small visually similar objects sheep as illustrated; in
Fig.1 (b) given that the orange is detected well, the seman-
tic relational information of co-occurrences can be utilized
to detect the occluded banana. These examples suggest
that we should not only emphasize the information of the
object itself but also exploit the contextual information.

In this work, we verify that contextual information
among multi-objects plays a more important role in zero-
shot detection than in traditional object detection through
experimental study. Graph has shown to be a superior tool
to model the visual and semantic relevance in many tasks.
Thus, to leverage such contextual information, we propose
a novel ZSD approach named GRaph Aligning Network
(GRAN) based on graph modeling and reasoning. Specifi-
cally, for graph modeling, we devise a Visual-Semantic Re-
lational Graph (VSRG) to comprehensively use both visual
and semantic relational information. We first construct a
Visual Relational Graph (VRG) and a Semantic Relational
Graph (SRG) where the nodes are the objects in the image
and the semantic representations of classes respectively and
the edges are the relevance between nodes in each graph.
To characterize mutual effect between two modalities, each
node in VRG establishes a connection with all nodes in
SRG to further formulate a heterogeneous VSRG by sim-
ply matching between visual and semantic information. For
graph reasoning, modal translators are designed for these
two graphs to transform the node states of different modals
to a common space for communication. To update the rep-
resentation of the individual node with information of other
nodes, each node first decides which messages to send, then
receives visual and semantic messages from other nodes on
the VSRG that are highly relevant. Based on this new ZSD
framework, zero-shot detection results are not only deter-
mined by visual and semantic information of individual ob-
jects but also affected by the visually related objects in the
image and semantic relevance of prior.

Comprehensive experiments on MSCOCO dataset sug-
gest that the visual and semantic relational information in-
deed improve the performance of ZSD with more desirable
and reasonable outputs.

2. Related Work
Contextual information. Naturally, contextual infor-

mation can help improve object detection, which needs
to simultaneously recognize and localize multiple targets.
There are many works [1, 8, 13, 19, 34, 47, 48] in the early
stage to improve object detection by using context informa-
tion. Recently, some methods based on CNN utilizing con-
text have been proposed. Several works have tried to use
context around an object or scene-level context in detec-

tion. ION [3] utilizes recurrent neural networks to exploit
information both inside and outside the region of interest.
GBD-Net [52] proposes a gated bi-directional CNN to pass
messages between features from different support regions.
SMN [6] has attempted to use the context of the relationship
between objects, and proposes a sequential reasoning model
that detects other objects based on existing detected objects.
SIN [30] jointly models scene-level and object-object rela-
tionships, and proposes a structure inference network to in-
ference object instances in the image via graph. Different
from these works, we explore heterogeneous graph cross
both visual and semantic modalities to model the relevance
of the objects not only in visual image but also in semantic
representation.

Graphical Model. Graph is a useful tool to model
structure information. In the early years, some works
[12, 20, 24, 32, 43, 45, 50] use a graphical model to im-
prove performance. Graphical model and deep neural net-
work have been integrated into a joint framework for group
activity recognition in [12]. S-RNN [20] proposes an ap-
proach for combining spatio-temporal graphs and recurrent
neural networks for diverse spatio-temporal tasks. GSNN
[32] uses a knowledge graph to improve performance on
image classification. Teney et al. [45] propose to build
graphs for scene objects and question words to exploit the
structure in these representations. Scene graph is utilized to
model objects and their relationship in [50]. [51] constructs
two graphs from visual and semantic aspects to solve vi-
sual relation detection task. Our work shares a similar spirit
as [51] in constructing the graphs, however, the two works
have essential differences that in [51] the representation and
supervision of predicates are indispensable for graph mod-
eling and reasoning respectively in their scene graph gen-
eration task, while our work targets at ZSD which does not
need to model predicates into graph.

Zero-Shot Detection. Recently, there have been some
attempts at ZSD. Rahman et al. [39] extend Faster R-
CNN [42] with a semantic alignment network and use meta-
classes to learn similarity among categories. Demirel et
al. [11] adopt hybrid region embedding to detect unseen
objects. Bansal et al. [2] introduce two background-
aware approaches to distinguish unseen objects from back-
ground. Rahman et al. [38] adopt polarity loss maxi-
mizing the gap between positive and negative predictions
to improve visual-semantic alignment. BLC [54] consid-
ers background word embedding is important for differen-
tiating background from foreground objects and proposes
a learnable background word embedding. [53, 17] absorb
the advantages of the latest Zero-Shot Recognition (ZSR)
methods and utilize a generative model to synthesize unseen
class features to achieve great improvement. Some works
[56, 55] focus on proposing object bounding boxes and use
semantic information to improve recall rates for unseen ob-
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Figure 2. Comparison of Proportion of Unreasonable Prediction
(PUP) of vanilla CNN with PUP of ZSR.

jects. Luo et al. [31] also take contextual information into
account and propose to infer novel objects surrounded by
known objects with inter-objects relation prior, where ex-
plicit graph modeling and reasoning with CRF are consid-
ered only in visual modal. Different from [31], we consider
both visual and semantic modalities and explicitly construct
a heterogeneous visual-semantic relational graph to reason
unseen objects.

3. Preliminary Studies

While it has been generally recognized that contextual
information is important for traditional object detection, we
will further show that it is even more important for ZSD. In
a real scene containing multiple objects, unreasonable pre-
dictions may occur if the information of the object itself is
used only, e.g., predicting the mouse which is near the key-
board on the table as a car in an office scene. In order to
eliminate unreasonable predictions, contextual information
can be leveraged to identify the neighboring objects around
an object. The basic idea is that the more unreasonable pre-
dictions using only the object’s own information will gen-
erate, the greater the potential role of context information
will be. In other words, the unreasonable predictions will
be reduced more by using contextual information.

Since direct analysis between ZSD and traditional object
detection is complicated, we relax the constraint to compare
Zero-Shot Recognition (ZSR) and traditional image classi-
fication. This can be considered as completely accurate lo-
calization for ZSD and traditional object detection.

We first construct datasets for the two tasks. In order
to reduce the difference from the popular ZSD benchmark,
the datasets are constructed from MSCOCO [28] dataset.
Specifically, for the ZSR dataset, we divide MSCOCO into
65 seen classes and 15 unseen classes (65/15 split) as pro-
posed by [38], crop the objects within the bounding box
area of the image and save them respectively to form the
training set zsr train (65 classes) and test set zsr test (15
classes). During the process of cropping, we filter out some
objects with small bounding boxes. For the dataset con-
struction of traditional image classification task, the test set
ic test is the same as zsr test, while the training set ic train
consists of the whole zsr train and the data from the 15 un-

seen classes, i.e., ic train covers all 80 classes. Each of the
15 categories has 1000 randomly chosen images. In order to
more fairly compare the values calculated by co-occurrence
times in subsequent stages, the original detection images of
these newly added images do not contain any object of seen
classes. More details can be seen in supplementary materi-
als.

Next, we will define the unreasonable prediction. Let C
be the number of classes in the dataset, M be the number of
images in the test set and Oi (i ∈ [1,M ]) be the i-th im-
age (object). Index(Oi) is the set of indexes of the images
(objects) which are from the same detection image with Oi.
Pred(Oi) denotes the predicted label of Oi and GT (Oi)
denotes the ground truth label. The unreasonable prediction
factor of Oi, denoted as ai, is defined as follows:

ai =
maxj∈Index(Oi) Co(Pred(Oi), GT (Oj))∑C

c=1 Co(Pred(Oi), c)
, (1)

where Co(·, ·) computes the co-occurrence times of
two classes. Given a threshold τ , if unreason-
able prediction factor ai < τ , then we regard
it as an unreasonable prediction under the condition
τ . With formulations above, we can define the
Proportion of Unreasonable Prediction (PUP ) under
the condition τ as follows:

PUPτ =
|unreasonable prediction|

|wrong prediction|

=
ΣM

i=1I(ai < τ)

Nw
, (2)

where I(·) is an indicator function, Nw is the number of
wrong predictions.

For experiments on traditional image classification, we
use ResNet-101 and change the output of the last fully-
connected (FC) layer to 80, which is the total number of
MSCOCO categories. For experiments on ZSR, we use a re-
cently representative method TCN [22] (with publicly avail-
able source codes) that utilizes word embedding of class
names as semantic representation to connect the seen and
unseen classes.

The greater of PUP, the more helpful the contextual in-
formation is, which means that the unreasonable predictions
of the model can be eliminated with contextual information.
As shown in Fig.2, as the threshold decreases, the average
PUP of ZSR is greater than vanilla CNN. Therefore, these
results indicate that contextual information plays a more im-
portant role in ZSD than in traditional object detection.

4. Approach
Our goal is to comprehensively exploit visual and se-

mantic relational information to enhance ZSD performance.
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Figure 3. An illustration of our baseline model Faster Semantic
R-CNN. (a) is the whole architecture of Faster Semantic R-CNN,
VSA represents the Visual-Semantic Aligning Module. (b) is the
detailed design of VSA.

To this end, different from existing methods that only ex-
ploit visual and semantic information of individual objects,
we construct a visual-semantic relational graph to take full
advantage of visual relevance in the scene and semantic
relevance in semantic representation. Moreover, a GRaph
Aligning Network (GRAN) is designed to pass messages
between nodes and update node states in the graph. We will
elaborate the whole framework of our method in the follow-
ing sections.

4.1. Problem Definition

In zero-shot detection, we have Ns seen classes S and
Nu unseen classesU , where the seen and unseen classes are
disjoint, i.e. S ∩ U = ∅. X s is the images of seen classes,
Ys is the labels of seen classes, Yu is the labels of un-
seen classes. The training data is Dtr = {(xi, yi,bi)|xi ∈
X s, yi ∈ Ys,bi ∈ R4}, where xi is the image containing
multiple objects, yi is class labels of objects, bi represents
bounding-box coordinates of objects in the image. No train-
ing images are available for unseen classes. Semantic infor-
mation {di}N

s+Nu

i=1 are available in order to build up the re-
lation between seen and unseen classes. The goal of ZSD is
to learn detector of unseen classes Fzsd : X → Yu and the
goal of Generalized Zero-Shot Detection (GZSD) is to learn
more general detector of all classes Fgzsd : X → Ys ∪ Yu,
where X denotes test images.

4.2. Baseline Model

In this section, we introduce our baseline model based
on Faster R-CNN [42], which is shown to yield better recall
in our experiments. It should be noted that our method can
be added to any detection model as a plug-and-play mod-
ule. In our baseline model, partial parameters of regression
and classification branches are shared. Unless otherwise
specified, we use ResNet-50 as the backbone of the base-
line model. In addition, we also use the Feature Pyramid
Network [26] to improve the recall for objects. We use RoI
Align [18] to get a fixed length feature for each RoI. The

process can be written as follows:

fi = RoIAlign(f , ri), (3)

where f denotes the visual feature maps derived from the
output of backbone, ri is the i-th RoI in the image, and fi is
the feature vector of ri.

Since the traditional detection model cannot detect un-
seen classes, we need to modify them to align visual and
semantic information for zero-shot detection. We propose
a visual-semantic aligning module to replace the classifica-
tion head of Faster R-CNN to get our baseline model Faster
Semantic R-CNN. The details of the module are demon-
strated in Fig.3. Motivated by [38, 39], in order to detect un-
seen objects, we use the semantic representation of the class
as supervision to train our model instead of class label. The
visual-semantic aligning module contains three main com-
ponents. After extracting object features, we use a learn-
able FC layer Wproj ∈ Rv×d to project feature from visual
to semantic space as illustrated in Fig.3, where v and d are
the dimensions of visual and semantic space, respectively.
The fixed FC layer Wseen ∈ Rd×(Ns+1) consists of seman-
tic representation (i.e. word embedding) of seen and back-
ground classes. For background class, we use the learned
word embedding of background as in [54] for its better per-
formance instead of the mean word vector of all classes.
Watt ∈ R(Ns+1)×(Ns+1) is an adjustable FC layer to per-
form attention on fixed semantic representation Wseen. Ex-
ternal vocabulary embeddings, introduced in [38] to enrich
the capacity of semantic representation of classes, are not
added into the baseline because of no improvement in per-
formance. The visual-semantic aligning module can be for-
mulated as follows:

fsemi = fiWproj , (4)

femb = tanh(WseenWatt), (5)

pi = Softmax(fsemi femb), (6)

where fsemi denotes projected visual features, femb repre-
sents the attended word embeddings, and pi ∈ RNs+1 de-
notes the prediction score of categories.

4.3. Graph Modeling

In order to simultaneously model the visual and semantic
relevance, we construct a visual relational graph (VRG) and
semantic relational graph (SRG), respectively.

In the VRG, each node of the graph represents an ob-
ject in the scene. We link each pair of object nodes with
an edge that formulates VRG as a complete graph. The
edges represent the visual relevance among nodes in the
VRG. To initialize the nodes of the graph, we first gener-
ate thousands of dense proposals in the image. We can get
some RoIs (Region of Interest) after filtering out duplicate
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Figure 4. The pipeline of our proposed method. We first get some RoIs from the input image. Each RoI gets fixed-length visual features
through RoIAlign and is initialized as node of Visual Relational Graph (VRG). Similarly, word embedding of each category is utilized
as semantic representation to initialize node of Semantic Relational Graph (SRG). Next, VRG and SRG are further merged into a Visual-
Semantic Relational Graph (VSRG), where edges between two graphs characterize the similarity of nodes through initial visual-semantic
matching that is implemented by the visual-semantic aligning module. To reason and update nodes representation on the VSRG, we use
GRaph Aligning Network (GRAN) to make nodes interact with each other by passing messages to enrich the representation of nodes for
the downstream recognition module.

proposals. For each RoI ri with its bounding box coor-
dinates bi = (xi, yi, wi, hi), we use RoI Align to extract
visual feature fi from it. A visual-to-semantic layer is de-
ployed to obtain the initial probability prediction pi. Before
the initialization of nodes, we use a visual modal translator
layer φvrg

proj to project visual features into a common space
for communication with semantic representations. Then the
state of each node nvrg

i in the VRG is initialized with cor-
responding fi as follows:

nvrg
i = φvrg

proj(fi), (7)

where φvrg
proj is a learnable FC layer. For modeling the se-

mantic relevance, we also construct a graph SRG, where
each node nsrg

i in the graph represents a category. We also
link each pair of category nodes with an edge to formulate
SRG as a complete graph, where the edges represent the
semantic relevance among nodes in the graph.

Similar to VRG, before initialization of nodes in the
SRG, we use a semantic modal translator layer φsrg

proj to
project word embedding di to the common space as fol-
lows:

nsrg
i = φsrg

proj(di), (8)

where φsrg
proj is also a learnable FC layer. Then we use the

projected word embedding of each class to initialize the cor-
responding node nsrg

i in the SRG.

Up to now, we have two isolated, initialized graphs: vi-
sual relational graph and semantic relational graph. In or-
der to make visual and semantic information interact with
each other, we need to establish a connection between the
two graphs. For each node in the visual relational graph,
it has a probability vector pi from initial visual-semantic
matching through baseline model Faster Semantic R-CNN.
We link each node in VRG to all nodes in SRG with its
probability vector pi as the weights of edges. Same as the
nodes in VRG, for each node in SRG, we create a reverse
connection to all nodes in VRG. Finally, we form a het-
erogeneous graph named Visual-Semantic Relational Graph
(VSRG) consisting of both visual and semantic relational
graphs. The whole pipeline of our proposed model is illus-
trated in Fig.4.

4.4. Message Passing

After graph modeling, we obtain a heterogeneous graph.
To make full use of the information of multiple objects at
the same time, we should make nodes interact with each
other on the VSRG. Hence we propose a GRaph Align-
ing Network (GRAN) motivated by GGNN [24] and GB-
Net [51], to reason and update node states in the graph.
We generate outgoing messages for propagating as in Fig.5.
Specifically, each node representation in the heterogeneous
graph is fed into a multi-layer perceptron to generate outgo-
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Figure 5. An illustration of message passing. The relational node
states in VSRG are selected to send into GRU to update the current
nodes.

ing messages as follows:

Svrg
i = ϕvrgsend(n

vrg
i ), (9)

Ssrg
i = ϕsrgsend(n

srg
i ), (10)

where ϕvrgsend, ϕsrgsend are learnable sending head which share
weights across VRG nodes and SRG nodes, respectively.
After generating outgoing messages, we send them through
all outgoing edges multiplied by the edge weights. Then for
each node ni, we collect messages from all nodes that have
an edge with it, and get Rvrg

i , Rsrg
i as follows:

Rvrg
i = ψvrg(eijS

vrg
j + eikS

srg
k ), (11)

Rsrg
i = ψsrg(eijS

vrg
j + eikS

srg
k ), (12)

where eij represents the edge between node ni and node
nj ; ψvrg, ψsrg are learnable weight matrices. When node
ni and node nj are both in VRG or SRG, eij is set to 1.

With information interaction, we can use visual and se-
mantic relational information to update the states of the
nodes and get a more precise representation for the down-
stream recognition module. We want to update the repre-
sentations of the nodes with the received information and
the previous states of the nodes, which requires modeling in
the time series. Recurrent Neural Network (RNN) is a type
of neural network used to process sequence data. In our
method, we use Gated Recurrent Unit (GRU) [7], a variant
of RNN, because of its well-designed memory mechanism
and effectiveness. For each node ni in VSRG, we have:

zt = σ(WzRt +Uznt), (13)

rt = σ(WrRt +Urnt), (14)

ht = tanh(WhRt +Uh(rt ⊙ nt)), (15)

nt+1 = (1− zt)⊙ nt + zt ⊙ ht, (16)

where Wz,Wr,Wh,Uz,Ur,Uh are learnable weight
matrices, ⊙ represents element-wise multiplication, nt is
the node state in the t-th iteration, Rt is the aggregated
messages in the t-th iteration. We use the updated nodes
between VRG and SRG to compute similarities to update

Table 1. Comparison of our method with other methods on evalu-
ation protocol of ZSD on two splits of MSCOCO. Seen/Unseen is
the split of the dataset. The recall is evaluated by selecting the top
100 detections over different IoU thresholds from 0.4 to 0.6. For
mAP, we use the VOC metric which only requires IoU of 0.5.

Method Seen/Unseen Recall@100 mAP

0.4 0.5 0.6 0.5

SB [2] 48/17 34.46 22.14 11.31 0.32
DSES [2] 48/17 40.23 27.19 13.63 0.54
TD [25] 48/17 45.60 34.30 18.10 -
PL [38] 48/17 - 43.59 - 10.10

BLC [54] 48/17 51.33 48.87 45.03 10.60
Ours 48/17 58.51 55.03 50.28 11.40

PL [38] 65/15 - 37.72 - 12.40
BLC [54] 65/15 57.23 54.68 51.22 14.70

Ours 65/15 65.27 62.70 58.28 14.90

the edges between these two graphs. After message passing
for T iterations, we obtain final predictions of classification
scores pi for the node nvrg

i from the edges between each
node nvrg

i in VRG and all nodes in SRG.

4.5. Training and Inference

It is worth noting that our proposed GRAN can be eas-
ily embedded in various detection models, including one-
stage and two-stage models. In this study, we choose the
classic two-stage detection framework Faster R-CNN. Our
approach only needs one-step end-to-end training.

Training. The loss function L of our model contains two
parts: bounding box regression loss Lreg and classification
loss Lcls. The final prediction of the model can be repre-
sented as a two-tuple (pi,bi), where pi is the classification
score and bi is the coordinates of the box. Similarly, the
ground truth is (p∗

i ,b
∗
i ). The loss function for an image is

written as:

L =
1

Ncls

∑
i

Lcls(pi,p
∗
i ) + λ

1

Nreg

∑
i

Lreg(bi,b
∗
i ),

(17)
whereLcls uses cross entropy loss andLreg uses the smooth
L1 loss, Ncls is the number of RoIs for classification and
Nreg is the number of RoIs for regression. λ is set to bal-
ance the two losses.

Inference. For seen classes, we can directly obtain clas-
sification score same as training. For unseen classes, we
follow [39] to use an additional procedure similar to ConSE
[35] during inference. The process can be briefly demon-
strated as follows:

punseen = (pseend
T
seen)dunseen, (18)

where pseen,punseen represent classification scores of seen
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Table 2. Comparison of our method with other methods on evaluation protocol of GZSD on two splits of MSCOCO. Seen/Unseen is the
split of the dataset. The IoU threshold is set to 0.5 on evaluation of recall and mAP. HM means the harmonic mean of mAP of seen and
unseen.

Method Seen/Unseen Seen Unseen HM
Recall mAP Recall mAP Recall mAP

DSES [2] 48/17 15.02 - 15.32 - 15.17 -
PL [38] 48/17 38.24 35.92 26.32 4.12 31.18 7.39

BLC [54] 48/17 57.56 42.10 46.39 4.50 51.37 8.20
Ours 48/17 66.70 43.90 54.54 4.70 60.01 8.50

PL [38] 65/15 36.38 34.07 37.16 12.40 36.76 18.18
BLC [54] 65/15 56.39 36.00 51.65 13.10 53.92 19.20

Ours 65/15 65.31 38.10 60.52 13.90 62.82 20.40

Figure 6. Qualitative examples for testing set detection results of our method. Yellow and pink boxes refer to detections of seen and unseen
classes respectively.

and unseen classes respectively, dseen,dunseen represent
word embeddings of seen and unseen classes respectively.

5. Experiments

5.1. Datasets and Splits

We validate our proposed method on the widely used
object detection dataset MSCOCO [28], which includes
82,783 training images and 40,504 validation images of 80
classes. Following the dataset splits of MSCOCO proposed
in [2] and [38], we use both two splits of the dataset in ex-
periments: (1) 48 seen classes and 17 unseen classes; (2)
65 seen classes and 15 unseen classes. Note that the seen
classes and unseen classes are disjoint.

5.2. Evaluation Protocol

The results of the evaluation protocol on ZSD and GZSD
in two splits of MSCOCO are reported. We measure the

Table 3. Ablation study of our method in different splits. S/U is
seen and unseen split. FSR means Faster Semantic R-CNN which
is our baseline model.

S/U FSR GRAN mAP/Recall
Seen Unseen HM

48/17 ✓ 44.6/65 4.5/52 8.2/58
✓ ✓ 43.9/67 4.7/55 8.5/60

65/15 ✓ 37.7/62 13.6/58 20.0/60
✓ ✓ 38.1/65 13.9/61 20.4/63

performance with metrics of recall and mAP. Only the top
100 detections are valid for evaluation.

5.3. Implementation Details

ResNet-50 is used as the default backbone network with
FPN [26]. All experiments are trained with 4 TITAN RTX
GPUs (two images for each GPU) for 12 epochs. For op-
timization, SGD optimizer is applied with momentum is

1115



Table 4. This table shows class-wise recall@100 of unseen classes for two splits of MSCOCO with IoU threshold is 0.5.

48/17 split of MS-COCO

Category bu
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rd
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nk
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ow

bo
ar

d

Recall 84.1 91.7 82.2 84.6 0.4 0.0 41.1 58.0 43.4 50.5 78.3 34.3 24.3 37.5 60.9 83.4 72.5

65/15 split of MS-COCO

Category ai
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t
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w
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h
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to
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t

m
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se

to
as
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r

ha
ir
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ie

r

Recall 70.4 79.8 21.8 96.9 94.4 62.3 54.9 72.8 48.6 85.6 73.3 69.0 17.5 56.4 4.1

0.9 and weight-decay is 0.0001. The warming-up trick is
used to avoid over-fitting in our experiments. The learn-
ing rate is set to 0.01 and decreased by 0.1 after 8 and
11 epochs. The L2 normalized 300 dimensional unsuper-
vised Word2Vec [33], which is trained from large corpora
like Wikipedia, is adopted as the semantic representation
of MSCOCO classes. Our model is implemented with Py-
Torch [37] and MMDetection [5] codebase 1.

5.4. Quantitative Results

ZSD Evaluation. We compare GRAN with the state-of-
the-art zero-shot detection approaches on both 48/17 [2] and
65/15 [38] splits of MSCOCO in Tab.1. For the 48/17 split,
we compare our method with SB [2], DSES [2], TD [25],
PL [38], BLC [54]. Our method outperforms all of them in
recall@100 and mAP by a significantly large margin. For
the split of 65/15, we beats PL [38] and BLC [54], bringing
up to 14.7% and 1.4% gains on recall@100 (IoU=0.5) and
mAP respectively.

GZSD Evaluation. The GZSD task, which is more diffi-
cult and realistic, requires detecting seen and unseen classes
at the same time. Same as ZSD evaluation, we compare our
method with DSES [2], PL [38], BLC [54] in GZSD set-
ting on two different seen/unseen splits of MSCOCO and
report the results in Tab.2. Note that the IoU threshold for
recall and mAP is set to 0.5. HM means the harmonic mean
of mAP of seen and unseen. It can be observed that our
method surpasses other methods on recall and mAP met-
rics. Class-wise recall@100 of unseen classes can be seen
in Tab.4.

Ablation Study. We conduct a controlled study of our
proposed method on GZSD evaluation. As shown in Tab.3,
the baseline method Faster Semantic R-CNN gives a good
foundation and achieves comparable mAP and excellent re-
call compared with others in Tab.2. Our method is able to

1Source codes are available at http://vipl.ict.ac.cn/resources/codes or
https://github.com/witnessai.

consistently improve on both seen and unseen categories.
5.5. Qualitative results

We show extensive qualitative results in Fig.6. Although
these images have various complex natural scenes with mul-
tiple objects, our method can simultaneously detect both
seen and unseen objects well. These examples suggest ef-
fectiveness of utilizing contextual information: the large
airplane help detect the small airplane; the hot dog help
detect the occluded cup. Additionally, our method has good
generalization ability of detection even for cartoon images
(the bottom right image in Fig.6). More cases can be seen
in our supplementary materials.

6. Conclusion

In this work, we find that contextual information is more
important in zero-shot detection than in traditional object
detection, hence we propose a zero-shot detection method
to jointly utilize contextual information containing both vi-
sual and semantic relational information. We formulate a
visual-semantic relational graph to comprehensively con-
sider these information. A graph aligning network is used
to reason and update representation of nodes in the graph
with more abundant information for the downstream recog-
nition. Experiments show that visual and semantic rela-
tional information are useful for zero-shot detection target-
ing at natural scenes with multiple objects. Promising re-
sults on MSCOCO dataset indicate the potential of the pro-
posed method to be applied in more challenging scenarios
with larger detection datasets.
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[43] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst,
and Xavier Bresson. Structured sequence modeling with
graph convolutional recurrent networks. In ICONIP, 2018.

[44] Bharat Singh and Larry S. Davis. An analysis of scale invari-
ance in object detection - SNIP. In CVPR, 2018.

[45] Damien Teney, Lingqiao Liu, and Anton van Den Hengel.
Graph-structured representations for visual question answer-
ing. In CVPR, 2017.

[46] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In ICCV,
2019.

[47] A Torralba, K Murphy, and WT Freeman. Using the forest
to see the trees: Object recognition in context. Comm. of the
ACM, 2010.

[48] Antonio Torralba, Kevin P Murphy, William T Freeman, and
Mark A Rubin. Context-based vision system for place and
object recognition. In ICCV, 2003.

[49] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta.
A-Fast-RCNN: Hard positive generation via adversary for
object detection. In CVPR, 2017.

[50] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In
CVPR, 2017.

[51] Alireza Zareian, Svebor Karaman, and Shih-Fu Chang.
Bridging knowledge graphs to generate scene graphs. In
ECCV, 2020.

[52] Xingyu Zeng, Wanli Ouyang, Bin Yang, Junjie Yan, and Xi-
aogang Wang. Gated bi-directional cnn for object detection.
In ECCV, 2016.

[53] Shizhen Zhao, Changxin Gao, Yuanjie Shao, Lerenhan Li,
Changqian Yu, Zhong Ji, and Nong Sang. Gtnet: Genera-
tive transfer network for zero-shot object detection. In AAAI,
2020.

[54] Ye Zheng, Ruoran Huang, Chuanqi Han, Xi Huang, and Li
Cui. Background learnable cascade for zero-shot object de-
tection. In ACCV, 2020.

[55] Pengkai Zhu, Hanxiao Wang, and Venkatesh Saligrama.
Zero shot detection. IEEE TCSVT, 2019.

[56] Pengkai Zhu, Hanxiao Wang, and Venkatesh Saligrama.
Don’t even look once: Synthesizing features for zero-shot
detection. In CVPR, 2020.

1118


